Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.

Identifieur interne : 001863 ( Main/Exploration ); précédent : 001862; suivant : 001864

Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.

Auteurs : Yan-Fei Zeng [République populaire de Chine] ; Jian-Guo Zhang [République populaire de Chine] ; Ai-Guo Duan [République populaire de Chine] ; Bawerjan Abuduhamiti [République populaire de Chine]

Source :

RBID : pubmed:27306416

Descripteurs français

English descriptors

Abstract

In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture.

DOI: 10.1038/srep28043
PubMed: 27306416
PubMed Central: PMC4910079


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.</title>
<author>
<name sortKey="Zeng, Yan Fei" sort="Zeng, Yan Fei" uniqKey="Zeng Y" first="Yan-Fei" last="Zeng">Yan-Fei Zeng</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jian Guo" sort="Zhang, Jian Guo" uniqKey="Zhang J" first="Jian-Guo" last="Zhang">Jian-Guo Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Duan, Ai Guo" sort="Duan, Ai Guo" uniqKey="Duan A" first="Ai-Guo" last="Duan">Ai-Guo Duan</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abuduhamiti, Bawerjan" sort="Abuduhamiti, Bawerjan" uniqKey="Abuduhamiti B" first="Bawerjan" last="Abuduhamiti">Bawerjan Abuduhamiti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Research Institute of the Altai Region, Xinjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forest Research Institute of the Altai Region, Xinjiang</wicri:regionArea>
<wicri:noRegion>Xinjiang</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27306416</idno>
<idno type="pmid">27306416</idno>
<idno type="doi">10.1038/srep28043</idno>
<idno type="pmc">PMC4910079</idno>
<idno type="wicri:Area/Main/Corpus">001745</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001745</idno>
<idno type="wicri:Area/Main/Curation">001745</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001745</idno>
<idno type="wicri:Area/Main/Exploration">001745</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.</title>
<author>
<name sortKey="Zeng, Yan Fei" sort="Zeng, Yan Fei" uniqKey="Zeng Y" first="Yan-Fei" last="Zeng">Yan-Fei Zeng</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jian Guo" sort="Zhang, Jian Guo" uniqKey="Zhang J" first="Jian-Guo" last="Zhang">Jian-Guo Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Duan, Ai Guo" sort="Duan, Ai Guo" uniqKey="Duan A" first="Ai-Guo" last="Duan">Ai-Guo Duan</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abuduhamiti, Bawerjan" sort="Abuduhamiti, Bawerjan" uniqKey="Abuduhamiti B" first="Bawerjan" last="Abuduhamiti">Bawerjan Abuduhamiti</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Research Institute of the Altai Region, Xinjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forest Research Institute of the Altai Region, Xinjiang</wicri:regionArea>
<wicri:noRegion>Xinjiang</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bayes Theorem (MeSH)</term>
<term>Cell Nucleus (genetics)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genetics, Population (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Plastids (genetics)</term>
<term>Populus (genetics)</term>
<term>Rivers (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Génétique des populations (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Liaison génétique (MeSH)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Plastes (génétique)</term>
<term>Populus (génétique)</term>
<term>Rivières (MeSH)</term>
<term>Théorème de Bayes (MeSH)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Plastids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Noyau de la cellule</term>
<term>Plastes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bayes Theorem</term>
<term>Genetic Linkage</term>
<term>Genetic Variation</term>
<term>Genetics, Population</term>
<term>Haplotypes</term>
<term>Rivers</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génétique des populations</term>
<term>Haplotypes</term>
<term>Liaison génétique</term>
<term>Rivières</term>
<term>Théorème de Bayes</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27306416</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>06</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.</ArticleTitle>
<Pagination>
<MedlinePgn>28043</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep28043</ELocationID>
<Abstract>
<AbstractText>In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Yan-Fei</ForeName>
<Initials>YF</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jian-Guo</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Ai-Guo</ForeName>
<Initials>AG</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abuduhamiti</LastName>
<ForeName>Bawerjan</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Forest Research Institute of the Altai Region, Xinjiang, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="N">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="N">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="Y">Genetics, Population</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="N">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045483" MajorTopicYN="Y">Rivers</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27306416</ArticleId>
<ArticleId IdType="pii">srep28043</ArticleId>
<ArticleId IdType="doi">10.1038/srep28043</ArticleId>
<ArticleId IdType="pmc">PMC4910079</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 1999 Jan;16(1):37-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Apr;154(4):1663-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10747061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 Jul 1;16(7):372-380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11403870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Mar;160(3):1217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1567-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Aug;22(2):141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1358469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2003 Oct;57(10):2197-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14628909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Mar;14(3):781-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Apr;14(4):1045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Jan;15(1):63-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 Jul;60(7):1372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Feb;98(2):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Feb 23;7:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17319954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Nov;99(5):483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17687247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):506-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Bioinform Online. 2007 Feb 23;1:47-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Nov;17(5):1105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Nov;30(11):1383-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Feb;20(4):671-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21214654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1988 Jul;3(7):158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21227192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):842-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):5042-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22989336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2013 Feb;26(2):229-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23323997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Dec;111(6):474-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1992 Jul;84(3-4):280-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23(17):4316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2482-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26880192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Aug;122(4):923-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2759430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1984 Nov;38(6):1358-1370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 May;45(3):622-629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Dec;138(4):1351-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7896114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Apr;142(4):1357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Dec;144(4):1331-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8978022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Jul;146(3):1165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9215917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zeng, Yan Fei" sort="Zeng, Yan Fei" uniqKey="Zeng Y" first="Yan-Fei" last="Zeng">Yan-Fei Zeng</name>
</noRegion>
<name sortKey="Abuduhamiti, Bawerjan" sort="Abuduhamiti, Bawerjan" uniqKey="Abuduhamiti B" first="Bawerjan" last="Abuduhamiti">Bawerjan Abuduhamiti</name>
<name sortKey="Duan, Ai Guo" sort="Duan, Ai Guo" uniqKey="Duan A" first="Ai-Guo" last="Duan">Ai-Guo Duan</name>
<name sortKey="Zhang, Jian Guo" sort="Zhang, Jian Guo" uniqKey="Zhang J" first="Jian-Guo" last="Zhang">Jian-Guo Zhang</name>
<name sortKey="Zhang, Jian Guo" sort="Zhang, Jian Guo" uniqKey="Zhang J" first="Jian-Guo" last="Zhang">Jian-Guo Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001863 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001863 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27306416
   |texte=   Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27306416" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020